Integral of $\sin(x) + \cos(x)$

Consider the following integral:

$$\int_0^\pi \sin(x) + \cos(x) \, dx.$$

- a) Use what you have learned about definite integrals to guess the value of this integral.
- b) Find antiderivatives of cos(x) and sin(x). Check your work.
- c) Use the addition property of integrals to compute the value of:

$$\int_0^\pi \sin(x) + \cos(x) \, dx.$$

Check your work by comparing to your answer from part a.

Integral of $\sin(x) + \cos(x)$

Consider the following integral:

$$\int_0^{\pi} \sin(x) + \cos(x) \, dx.$$

- a) Use what you have learned about definite integrals to guess the value of this integral.
- b) Find antiderivatives of cos(x) and sin(x). Check your work.
- c) Use the addition property of integrals to compute the value of:

$$\int_0^{\pi} \sin(x) + \cos(x) \, dx.$$

Check your work by comparing to your answer from part a.

a) sin I is positive from x=0 to x=1 of

cos X is symmetric with positive and negative

values from x=0 to x=1

=> Area under cos x cancels out

 $= \int_0^{\pi} \sin x + \cos x \, dx = \int_0^{\pi} \sin x \, dx$

b) $F'(x) = \cos x$ $G'(x) = \sin x$ $\int F'(x) dx \qquad \int G'(x) dx$ $= \sin x + \zeta \qquad = -\cos x + \zeta$

C) $\int_{0}^{\pi} \sin x + \cos x \, dx = \int_{0}^{\pi} \sin x \, dx + \int_{0}^{\pi} \cos x \, dx$ $= -\cos x \Big|_{0}^{\pi} + \sin x \Big|_{0}^{\pi}$ = -(-1-1) + 0